·IIIII CISCO

Basic configuration

CLI Configuration

- Basic Router Configuration:
 - -Naming the router
 - -Setting passwords
 - -Configuring interfaces
 - -Configuring a banner
 - -Saving changes on a router
 - -Verifying basic configuration and router operations

Configuring Router Identification

Router Name

Router(config) #hostname wg_ro_c
wg_ro_c(config) #

Message-of-the-Day Banner

wg_ro_c(config) #banner motd #
 Enter TEXT message. End with
 the character #

Interface Description

wg_ro_c(config) #interface ethernet 0
wg_ro_c(config-if) #description Engineering LAN

Configuring a Router Password

Console Password

Router(config) **#line console** 0 Router(config-line) **#login** Router(config-line) **#password** <u>cisco</u>

Virtual Terminal Password

Router(config) **#line vty 0 4** Router(config-line) **#login** Router(config-line) **#password sanjose**

Enable Password

Router (config) #enable password cisco

Secret Password

Router (config) #enable secret sanfran

Service Password-Encryption Commands

Router (config) #service password encryption Router (config) #no service password-encryption

Configuring Interfaces

Identify the role of a router in a network.

Configuring Router Interfaces

All interfaces are accessed by issuing the interface command at the global configuration prompt.

In the following commands, the type argument includes serial, ethernet, fastethernet, and others:

Router(config)**#interface** type port Router(config)**#interface** type slot/port Router(config)**#interface** type slot/subslot/port

The following command is used to administratively turn off the interface:

Router (config-if) #shutdown

The following command is used to turn on an interface that has been shutdown:

Router(config-if) #no shutdown

The following command is used to quit the current interface configuration mode:

```
Router (config-if) #exit
```

When the configuration is complete, the interface is enabled and interface configuration mode is exited.

Configuring Interfaces

Router#config t

```
RouterA(config) # interface serial 0/0
RouterA(config-if) # ip address 192.168.1.1 255.255.255.0
```

```
RouterA(config-if) # no shutdown
```

```
RouterA(config-if)# clock rate 56000
RouterA(config-if)# bandwidth 64
RouterA(config-if)# exit
```

```
(required for <u>serial</u> DCE only)
(a value in kbps)
```

```
RouterB(config) # int serial 0/1
RouterB(config-if) # ip address 192.168.1.2 255.255.255.252
RouterB(config-if) # no shutdown
RouterB(config-if) # exit
RouterB(config) # exit
Router#
To know which interface is the DCE :
RouterA# show controller s0/0
```

Configuring a serial interface

How can you tell which end is the DTE and which end is the DCE?

- Look at the label on the cable.
- Look at the connecter between the two cables The DTE cable will always be male and the DCE cable will always be female.

Serial Interface show controller Command

```
Router#show controller serial 0/0
HD unit 0, idb = 0x121C04, driver structure at 0x127078
buffer size 1524 HD unit 0, V.35 DTE cable
```

Shows the cable type of serial cables

Interfaces

Router#show ip interface brief

Interface	IP-Address	OK?	Method	Status	Proto	ocol
FastEthernet0/0	unassigned	YES	unset	administratively	down	down
Serial0/0	unassigned	YES	unset	administratively	down	down
BRI0/0	unassigned	YES	unset	administratively	down	down
BRI0/0:1	unassigned	YES	unset	administratively	down	down
BRI0/0:2	unassigned	YES	unset	administratively	down	down
Serial0/1	unassigned	YES	unset	administratively	down	down
Router#						

Interpreting the Interface Status

- Serial0/1 is administratively down, line protocol is down

interface is shut down

- Serial0/1 is down, line protocol is down

interface or cable H/W failure (no keep-alives)

- Serial0/1 is up, line protocol is down

different encapsulation type (PPP, HDLC, FR) or no clock rate on the DCE device.

Verification tools

You have to verify all config. steps

- Verify host identification.
- Verify router passward setting
- Verify interface configuration

Managing Console Input

Router(config)#line console 0 Router(config-line)#logging synchronous Router(config-line)#exec-timeout 0 0 Router(config-line)#exit

Router(config) #no ip domain-lookup

SECTION SUMMARY

- **1. Configuring Router Identification**
- 2. Configuring a Router Password
- 3. Configuring Interfaces
- 4. Basic Switch configuration

Viewing, Saving and Erasing the Configurations

Router#show running-config

```
Current configuration : 542 bytes
```

```
version 12.2
```

```
!
```

1

```
interface FastEthernet0/0
```

no ip address

shutdown

duplex auto

speed auto

```
!
```

```
interface Serial0/0
```

no ip address

shutdown

```
!
line con 0
```

```
line aux O
```

```
line vty 0 4
```

```
!
end
```

```
Router#
```

running-config

- The running-config file is the configuration in RAM memory.
- All changes are made to the running-config file.
- This is the configuration that the router is currently using.
- The running-config is lost when the router loses power or reloads.
- Privilege mode command.

Router#show startup-config

startup-config is not present
Router#

startup-config

- The startup-config file is the saved configuration in NVRAM.
- If there is a startup-config file in NVRAM when the router boots up, this file will be copied into running-config.
- The running-config is what the router will use.
- Privilege mode command.

Copy running-config to startup-config

```
Router#copy running-config startup-config
Destination filename [startup-config]? <Press Enter>
Building configuration...
[OK]
Router#show startup-config
Current configuration : 542 bytes
version 12.2
interface FastEthernet0/0
<text omitted>
```

Erase startup-config

Router#erase startup-config

Erasing the nvram filesystem will remove all files! Continue? [confirm] <**Press Enter**>

[OK]

Erase of nvram: complete Router#

- When you are done with the routers in the lab, please be sure to erase the startup-config.
- If you are starting a lab, and you do not get the message:

Would you like to enter the initial configuration dialog? [yes/no]:

- You will need to erase the startup-config and reboot.
- Privilege mode command.

Cisco IOS copy Command

Managing configuration files

Use a text file to backup and restore config settings

Saving to a Text File in Hyperterminal

In the terminal session:

- 1. Start the text capture process
- 2. Issue a show running-config command
- 3. Stop the capture process
- 4. Save the text file

Return the Device to Its Original Configuration

- Router#reload
- System configuration has been modified. Save? [yes/no]: n
- Proceed with reload? [confirm]
- To erase the startup configuration file use erase NVRAM:startup-config or erase startup-config at the privileged EXEC mode prompt:
- Router#erase startup-config

Discovering & testing the network

Cisco Discovery Protocol (CDP)

- Cisco Discovery Protocol (CDP) is a powerful networkmonitoring and –troubleshooting tool.
- CDP is an information-gathering tool used by network administrators to get information about directly connected Cisco devices.
- CDP is a proprietary tool that enables you to access a summary of protocol and address information about Cisco devices that are directly connected.

- By default, each Cisco device sends periodic messages to directly connected Cisco devices.
- These messages are known as CDP advertisements.
- A Cisco device frequently has other Cisco devices as *neighbors* on the network.
- Information gathered from other devices can assist you:
 - -in making network design decisions
 - -in troubleshooting
 - -in making changes to equipment.
 - -CDP can be used as a network discovery tool

- CDP operates at Layer 2 only.
- Therefore, CDP neighbors are Cisco devices that are directly connected physically and share the same data link.
 - -R1,S1,R2 are CDP neighbors
 - -R2, R1, S2, R3 are CDP neighbors
 - -R3, R2 S3 are CDP neighbors

Discovering Neighbors with CDP

- CDP runs on routers with Cisco IOS to get information about the direct connected Cisco devices.
- Summary information includes:
 - Device identifiers
 - Address list
 - Port identifier
 - Capabilities list
 - Platform

Using the show cdp neighbors Command

Device ID	Local Intrfce	Holdtme	Capability	Platform	Port ID
RouterB	Ser 0/0	148	R	2610	Ser 0/1
SwitchA	Eth 0/0	167	SI	WS-C2950-	2Fas 0/2

RouterA# show cdp neighbors detail

provide also the neighbors ip addresses.

SH CDP Neighbor detail

- Cairo# sh cdp entry ------
- Device ID: tanta
- Entry address(es):
- IP address : 192.168.2.1
- Platform: cisco C2800, Capabilities: Router
- Interface: FastEthernet0/0, Port ID (outgoing port): FastEthernet0/1
- Hold time: 155
- Version :
- Cisco IOS Software, 2800 Software (C2800NM-IPBASE-M), Version 12.3(14)T7, RELEASE SOFTWARE (fc2)
- advertisement version: 2
- Duplex: full

Enabling CDP on a Router

To enable CDP, use the **cdp run** global configuration command. CDP is on by default. Use the **no** form of this command to disable CDP.

Router(config)#cdp run

To enable Cisco Discovery Protocol (CDP) on an interface, use the **cdp enable** interface configuration command. Use the **no** form of this command to disable CDP on an interface. CDP is enabled by default on all supported interfaces.

Router(config)#interface serial 0/0 Router(config-if)#cdp enable

clear cdp counters

```
Rtl#show cdp traffic
CDP counters:
     Total packets output: 6, Input:6
     Hdrsyntax: 0, Chksum error: 0, Encaps failed:0
     No memory: 0, Invalid packet: 0, Fragmented:0
     CDP version1 advertisements output: 0, Input:0
     CDP version2 advertisements output: 6, Input:6
Rt1#clear cdp counters
Rtl#show cdp traffic
CDP counters:
     Total packets output: 0, Input:0
     Hdrsyntax: 0, Chksum error: 0, Encaps failed:0
     No memory: 0, Invalid packet: 0, Fragmented:0
     CDP version1 advertisements output: 0, Input:0
     CDP version2 advertisements output: 0, Input:0
Rt1#
```

show cdp

```
CDP Version 1
Rt3#show cdp
Global CDP information:
   Sending CDP packets every 60 seconds
   Sending a holdtime value of 180 seconds
Rt3#
CDP Version 2
Rtl#show cdp
Global CDP information
   Sending CDP packets every 60 seconds
   Sending a holdtime value of 180 seconds
   Sending CDPv2 advertisments is enabled
Rt1#
```

show cdp interface

Other cdp commands

show cdp traffic – shows number of packets sent and received

cdp timer - specifies how often the IOS sends CDP updates

debug cdp - for debugging all aspects of cdp

Disabling CDP

Router(config)# no cdp run

or

Router(config-if) # no cdp enable

CDP can be a security risk.

- To disable CDP globally, for the entire device, use this command: no cdp run
- To stop CDP advertisements on a particular interface: no cdp enable

Using the ping and trace Commands

Router#ping 10.1.1.10

```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms
Router#trace 192.168.101.101
Type escape sequence to abort.
Tracing the route to 192.168.101.101
```

1 p1r1 (192.168.1.49) 20 msec 16 msec 16 msec 2 p1r2 (192.168.1.18) 48 msec * 44 msec Router#

Ping commands tests the connectivity and path to a remote device (test layer 3 in TCP/IP)

IOS Ping Indicators

- A ping from the IOS will yield to one of several indications for each ICMP echo that was sent. The most common indicators are:
 - -! indicates receipt of an ICMP echo reply
 - -. indicates a timed out while waiting for a reply
 - -U an ICMP unreachable message was received
- the ping command moves from Layer 3 of the OSI model to Layer 2 and then Layer 1. Ping uses the ICMP protocol to check for connectivity.

Test the Stack

 Given a type of host and a master addressing scheme, trace the steps for assigning host parameters to a host

Testing Local TCP/IP Stack

NIC

Use the ping command to determine if the IP protocol is properly bound to an NIC

Testing the Local NIC Assignment

IP Address. : 10.0.0.5 Subnet Mask : 255.255.255.0

Testing the Local Network

- Router#ping
- Protocol [ip]:
- Target IP address:10.0.0.1
- Repeat count [5]:
- Datagram size [100]:
- Timeout in seconds [2]:5
- Extended commands [n]: n

Testing Local Network

Successfully pinging the other host's IPv4 addresses will verify that not only the local host is configured properly but the other hosts are configured correctly as well.

TELNET

To initiate a Telnet session any of the following alternatives can be used:

Denver>connect paris

Denver>paris

Denver>131.108.100.152

Denver>telnet 131.108.100.152

Denver>telnet paris

Reopening a suspended Telnet session

Initiate a session

Denver>telnet paris

End a session

Paris>**exit**

Suspend a session

Paris>**<Ctrl><Shift><6><x>** Denver>

Resume a session

Denver><Enter>

Disconnect a session

Denver>disconnect paris

Display sessions

Denver#show sessions					
Conn	Host	Address	Idle	Conn Name	
1	Paris	131.108.100.152	0	Paris	
2	Tokyo	126.102.57.63	0	Tokyo	

Using Telnet to Connect to Remote Devices

Telnet is used to check all the TCP/IP stack

Viewing Telnet Connections

	SwitchA RouterA R		Ro	uterB	SwitchB	
			<u>\$0</u> 10.1 10.1.1.1	S1 1.1.2		
	10.3.3.2	10.3.3.1	,		10.2.2.1	10.2.2.2
Rout	erA#show	sessions				
Conn	Host		Address	Byte	Idle	Conn Name
* 1	10.1.1.	2	10.1.1.2	0	0	10.1.1.2
RouterB#show users						
	Line	User	Host(s)		Idle	Location
* 0	con 0		idle		1w0d	
1:	1 vty 0		idle		00:00:09	10.1.1.1

Suspending and Resuming a Telnet Session

Closing a Telnet Session

Summary

- **1. Router Initialization.**
- 2. Router Access
- 3. CLI First look
- 4. Basic configuration
- 5. Viewing, Saving and Erasing the Configurations
- 6. Discovering & testing the network

7. TELNET

#